

Monitoring 12 single battery or battery group's voltage, current, temperature, etc.

BMS 100 Battery Management System

BMS100 User Manual

Ver 1.1

Date Issued: 2020-07-06

King Pigeon Hi-Tech. Co., Ltd.

www.IOT-Solution.com

Table of Contents

【UPGRADE HISTORY】	3
1.1 Brief introduction	3
1.2 Application	3
1.3 Safety Instructions	3
1.4 Standard Packing List	4
2. Main Features	5
3. Technical Specifications	5
4. Hardware Description	7
4.1 Dimension	7
4.2 LED Indicator Light	7
4.3 Interface Definition	7
5. Configuration	8
5.1 Device Connection Preparetion	8
5.2 Serial Port Setting	10
5.3 Battery Group Setting	10
5.4 Analog Input	11
5.5 Battery Voltage Measurement	12
5.6 Read&Save	12
5.7 Select Voltage Measurement range	
6. Common Applications	14
6.1 Application of Analog Input	14
6.1.1 0-5V Sensor Wiring	14
6.1.2 4-20mA Sensor Wiring	15
6.2 Application of Battery Voltage Measurement	15
6.2 .1Application of batteries in series	16
6.3 Application of Battery Grouping	16
6.4 Application of Battery Casacade	18
7.Modbus Slave Application	19
8.Warranty	20
Appendix Local Register Address	20

This user manual has been designed as a guide to the installation and operation of BMS 100 battery management system Statements contained in the manual are general guidelines only and in no way are designed to supersede the instructions contained with other products.

We recommend the advice of a registered electrician before any Installation work.

King Pigeon Hi-Tech.Co., Ltd, its employees and distributors, accept no liability for any loss or damage including consequential damage due to reliance on any material contained in this manual.

King Pigeon Hi-Tech.Co., Ltd, its employees and distributors, accept no liability for any Network upgrading or due to the technology specifications contained in this manual.

[UPGRADE HISTORY]

DATE	FIRMWARE VERSION	HARDWARE VERSION	DESCRIPTION
2019-12-24	V1.0		
2020-07-06	V1.1		

1.1 Brief introduction

1.2 Application

UPS monitoring;

Computer room battery management and monitoring;

Electric vehicle battery management monitoring;

Telecommunication BTS monitoring;

Solar battery monitoring;

Other battery or battery group monitoring.

1.3 Safety Instructions

Safety Instructions

Please do not use this product in places where the use of mobile phones is prohibited!

Wireless Interference

This product uses GSM / GPRS / 3G / 4G wireless network, please pay attention to wireless interference!

Before installing and using this device, please confirm whether the following materials are included in the product box:

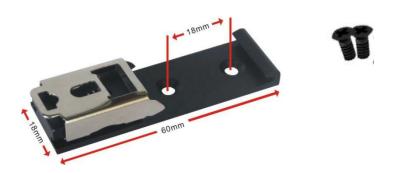
1.4 Standard Packing List

1x BMS100

• 2x 3.5mm female jack.

• 1x USB to RS485 cable

• 1x Adaptor (12VDC/2A)



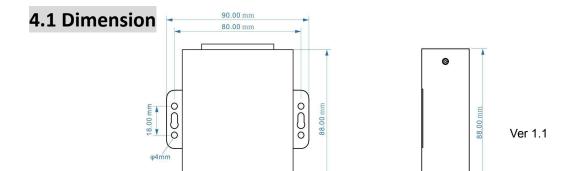
Note: If the above items are missing or damaged, please contact King Pigeon sales.

Optional accessories (purchase separately)

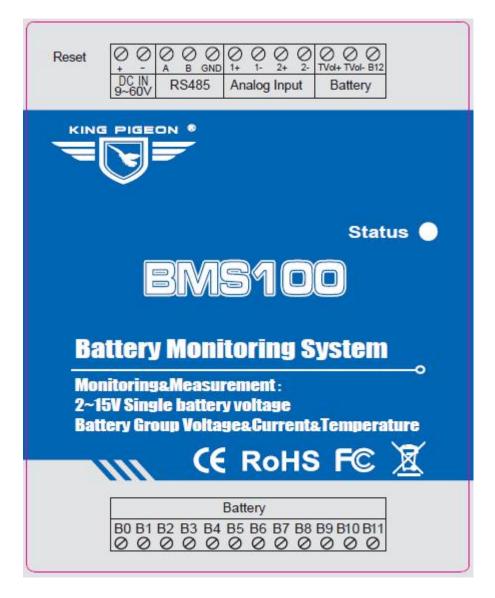
DIN35mm rail mounting bracket

2. Main Features

- \blacktriangleright Acquisition 2/4 channels of analog input 4 \sim 20mA, 0 \sim 5V, optional;
- Adopt 12-bit AD acquisition processing, high accuracy measurement;
- Standard Modbus-RTU protocol;
- RS-485 (RS-422 optional) communication interface with ESD protection circuit;
- ightharpoonup Wide working voltage DC9 $\,\sim\,$ 60V, with anti-reverse protection function ;
- Using industrial-grade chip, built-in watchdog, and has perfect anti-lightning and anti-interference measures to ensure reliability;
- > Configurable maximum and minimum value of analog input, intelligent conversion of actual value, convenient for various analog measurement requirements;
- Can measure 12 single battery voltages, several battery group and 1 total voltage;
- It has 3 precision gears for different voltage ranges to improve the voltage measurement accuracy;
- With LED light to indicate working status, easy to install and debug on site;
- Wall mounting or 35mm standard DIN rail mounting, multiple wiring methods, convenient for field installation and wiring.

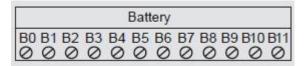

3. Technical Specifications

Item	Parameter	Description
	Power supply	
	voltage	9 ~ 60V DC
Power	Power	
	Consumption	≤0.3W
	Power Protection	Anti-reverse connection, ESD air: 15KV, surge: 4KV
RS485	Protocol	Modbus RTU
Serial Port	Baud rate	1200bps-115200bps


	<u>'</u>	
	Data Bit	8
	Parity	None, Even, Odd
	Stop Bit	1,2
	Protocol	Modbus RTU (slave)
	Qty	2Channel
	Input way	Differential input
	Input type	4~20mA or 0~5V default 0-5V ,can connect current and temperature sensor to measure current and temperature.
	Resolution	12Bit
Analog		I ±0.1% FSR @ 25 ℃
Input Accuracy	Accuracy	I ±0.3% FSR @ -10 and 60 ℃
		I ±0.5% FSR @ -40 and 75 ℃
	Sampling	
	frequency	200ms
Input resistan		>1M ohms
	Qty	1Channel
	Input way	Differential input
Total	Measure range	0~300V DC
voltage	Resolution	12Bit
input	Accuracy	±0.2%FSR@25℃
	Sampling	
	frequency	2ms
	Input way	Differential input
	Measure range	0~15V DC
Single	Resolution	12Bit
Battery	Accuracy	±0.2%FSR@25℃
	Sampling frequency	2ms

4. Hardware Description

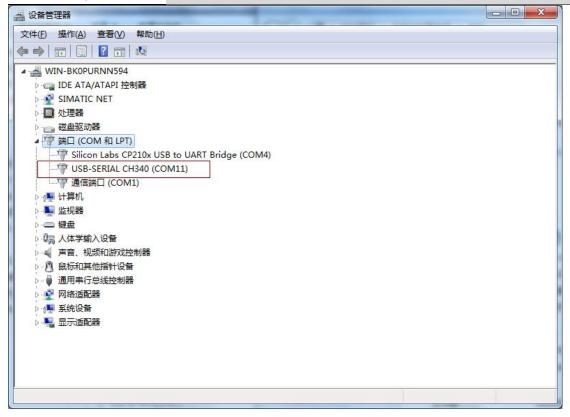
4.2 LED Indicator Light


LED Indicator Light						
Name	Color	Status Description				
		Steady	The device is in normal working status			
		on The dev	The device is in normal working status			
Status	Red	Red	Red	tatus Red	Blink Data communication with Modbu	Data communication with Modbus master via
		DIIIK	RS485			
Off		Off	Power outage or device issue			
Pocot	Danat		In the power on state, press and hold for 3			
Reset			seconds, the device can be restored to the			

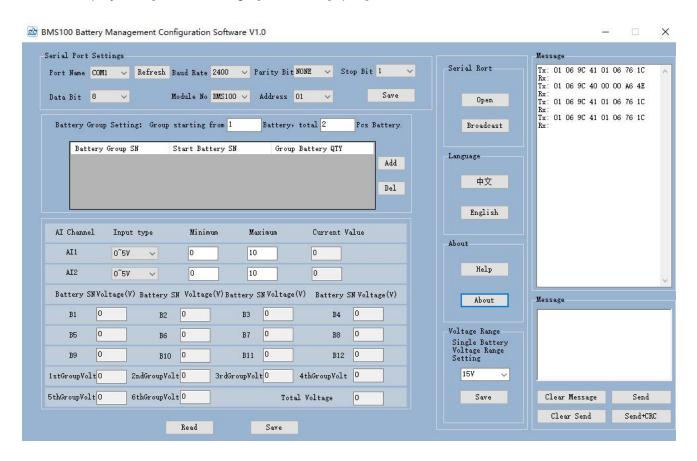
factory settings

4.3 Interface definition

Upper terminal block			Во	ottom terminal block		
Туре	Mark	Description	Туре	Mark	Description	
DC IN	+	Power supply+		В0	Public negative	
9~60V	_	Power supply-		B1	1st channel battery +	
	A+	485 data+		chan	2nd channel battery +	
RS485	B-	485data-		В3	3rd channel battery +	
	GND 485Ground			B4	4th channel battery +	
	AIN1+	Analog input 1+	BatteryPower	B5	5th channel battery +	
Analog	AIN1-	Analog input 1-	11 7	В6	6th channel battery +	
Input	AIN2+	Analog input 2+		В7	7th channel battery +	
	AIN2-	Analog input 2-		B8	8th channel battery +	
	TVol+	Total battery voltage+		В9	9th channel battery +	
Battery	TVol-	Total battery voltage-		B10	10th channel battery +	
	B12 12th channel battery +			B11	11st channel battery +	


5. Configuration

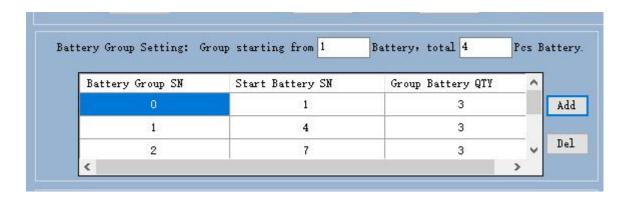
5.1 Device connection preparation


Download the BMS100 configuration software and USB to 485 driver from www.iot-solution.com website, then unzip and install;

After the installation is complete, replug the USB-485 device. Right-click [My Computer], and click [Properties]> [Device Manager]> [Port]. If the connection is normal and the driver installation is normal. Show as below picture COM11

Run the BMS100 configuration software on the computer, select the correct COM port, that is, the port number displayed in [Device Manager], and click [Open], as shown below:

Select [Broadcast], the device and the configuration software will start pairing, and the LED on the device


will start flashing. After successful pairing, it will prompt the broadcast success.

5.2 Serial Port Setting

Serial Port Setting					
Item	Description	Default			
Serial Port	Select the port number of which the device is	COM1			
Number	connected.	COMI			
Refresh	When the port number does not show the correct				
Reliesii	port, you can click to refresh.				
Baud Rate	1200,2400,4800,9600,19200,38400,57600,115200	9600			
Dauu Rale	optional.	9000			
Data bit	8	8			
Parity	None,even,odd	none			
Stop bit	1,2	1			
I / O module	Configuration software automatically recognizes the	DMC400			
model	device model	BMS100			
Address	Device's modbus address	01			
	To change the baud rate, data bit, parity bit, stop bit				
	of the device, the address needs to click the [save]				
Settings	button to write the changed data to the device. After				
	the device is powered off and restarted, it will start				
	with the changed configuration.				

5.3 Battery Group Settings

Group the batteries according to how they are connected.

For example:

Fill in the box: The battery group starts from battery 1, and a total of 2 batteries form a group.

Click [Add] to add the 0th battery group to the table;

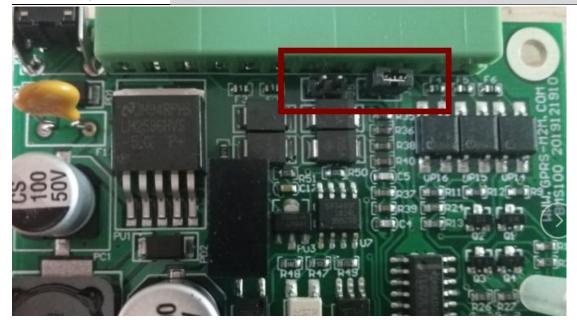
Indicates that the first and second batteries are set as a group, group serial number is 0.

Similarly, the battery group number 1 in the table indicates that the third, fourth, and fifth batteries are set as a group;

The battery pack number 2 indicates that the sixth, seventh, eight, nine, ten, and eleven batteries are set as a group.

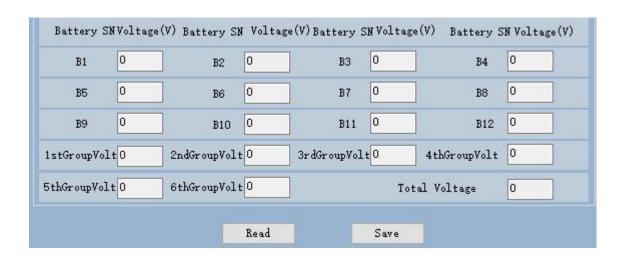
Select the corresponding battery group number and click [Del] to delete the battery.

For battery grouping and wiring after grouping, see the application of battery voltage measurement.


Note: The minimum battery group is 2 batteries, so 12 batteries can be divided into 6 groups at most.

5.4 Analog Input

Al Channel Settings				
Item	Description	Default		
Al	Al1 and Al2	Al1		
Channel	ATT allu AIZ	4-20mA		
Innut Tuno	0~5V or 4~20mA ,default is 0-5V,lf need 4-20mA,please	AI2 0-5V		
Input Type	tell us before order.			
Maximum	Sensor's max measure value			
Minim	Sensor's min measure value			
Current	Read the current actual value , such as specific values			
Value	such as pressure xxxPa or temperature xxx $^{\circ}$ C.			
Remark:	The hardware also needs to be adjusted when the input			
Kemark:	type 0~5V and 4~20Ma are changed.			


As shown in the picture, J6 is a jumper switch for AIN2 channel type, and J5 is a jumper switch for AIN1 channel type.

The type is 0~5V when the jumper is not inserted, and the type is 4~20mA when the jumper is inserted.

AIN1 defaults to 4~20mA type;

AIN2 defaults to 0-5V type;

5.5 Battery Voltage Measurement

B1 ~ **B12**: display the current voltage value of each battery;

Group 1 ~ 6 voltage: display the voltage value of each group of batteries; (if no battery pack is added, the default display is 0)

Total battery voltage: display the total voltage value measured real time.

5.6 Read&Save

Read: After clicking, you can read

- 1.Battery group information;
- 2. Input type of AI channel, maximum value, minimum value, current value.
- 3. The current value of each battery and battery pack and total voltage.

Save: Click to save

- 1.Battery group information;
- 2. Input type of AI channel, maximum value, minimum value.

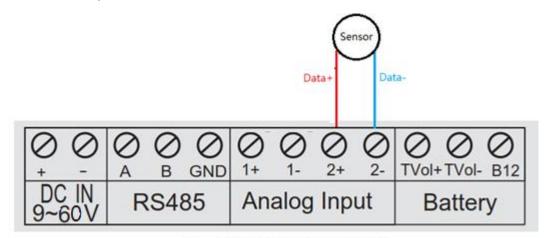
5.7 Select Voltage Measurement range

Select the battery range according to the voltage of a single battery. Selecting the correct range can improve the measurement accuracy;

Single battery is 0 ~ 3V, select 3V range.

Single battery is 3 ~ 6V,6V range is selected.

Single battery is 6 ~ 15V,15V range is selected.

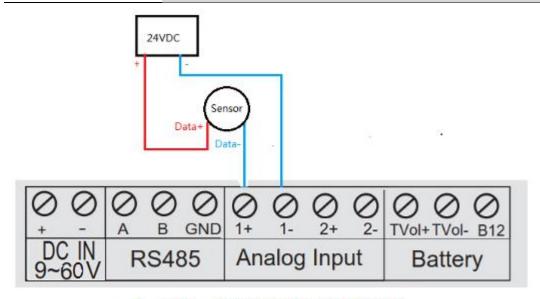

6. Common Applications

6.1 Application of Analog Input

Current&temperature measurement.

0~5V sensor wiring

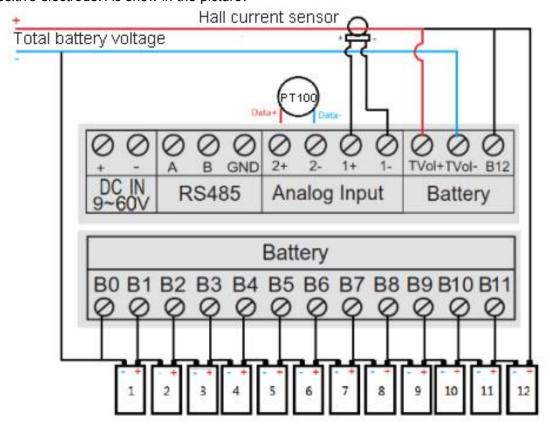
Pls see below picture



0~5V类型传感器接线

6.1.2 4~20mA Sensor Wiring

When using $4 \sim 20$ mA type sensor, the sensor needs to be powered by 24V power supply (can be powered by the tested battery pack). The wiring is as shown in the picture.



4~20mA类型传感器接线

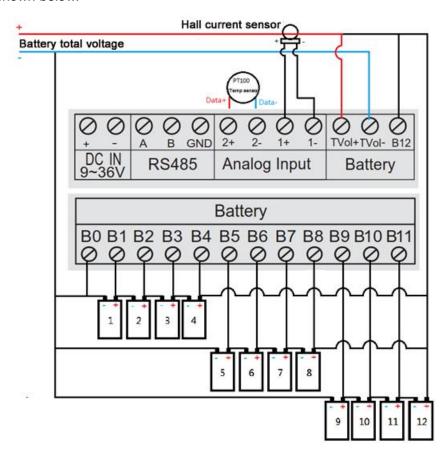
6.2 Application of Battery Voltage Measurement

6.2.1Application of batteries in series

When all batteries in series connection, each battery's negative electrode connect to the next battery's positive electrode. As show in the picture:

The electric potential difference between B1 and B0 is first battery's voltage, so B1 point is first battery's

voltage.

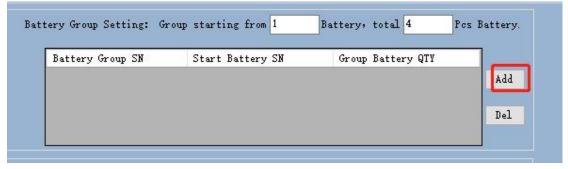

Similarly, the potential difference between points B2 and B1 is the voltage of the second battery, so point B2 is the voltage of the second battery; point B3 is the voltage of the third battery; and so on, each battery has a corresponding point to monitor.

TVol +,TVol- can be used to monitor the total voltage of all batteries. Analog Input 1 can be used to monitor the battery current. Analog Input 2 can be used to monitor the current battery temperature.

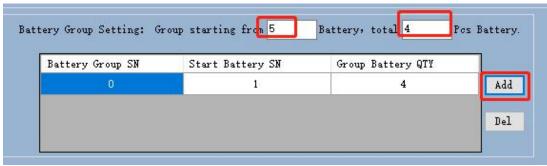
Note: PT100 sensors have $0 \sim 5V$ type and $4 \sim 20$ mA type. For wiring, please refer to the application of analog input.

6.3 Application of Battery Grouping

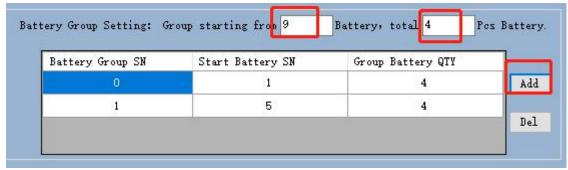
When batteries are connected in parallel, battery grouping is required. The batteries connected in series are a group, and the negative electrode of the first battery of each group needs to be connected to B0.As shown below.



In the picture, there are 12 batteries in total, 4 batteries in one group, and 3 batteries groups in total. BMS100 can measure the voltage of 12 single battery, also the total voltage. And It also can monitor the voltage of each battery group.


The configuration software add the battery pack as below:

Add first battery group of battery 1-4.(fill in 1 and 4,then click "Add")



After add first 4 batteries in first group, show below: (second batteries group with battery 5-8, and total 4PCS, click" Add")

It will show the second group(battery 5-8, and third group start from 9, then click "Add" to add 3rd group)

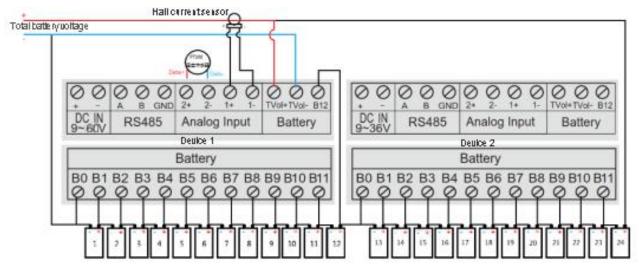
Then 3rd battery group with battery 9-12 show below:

Battery Group SN	Start Battery SN	Group Battery QTY	
0	1	4	Ad
1	5	4	
2	9	4	De

Then click read.

After adding batteries groups, the battery bank voltage can be monitored.

TVol +, TVol- can be used to monitor the total voltage of all batteries. Analog Input 1 can be used to monitor the battery current. Analog Input 2 can be used to monitor the battery temperature.


If you need to monitor the current of each group of batteries, you can use King Pigeon S275 or other device to expand the Analog Input interface. S275 can upload all data of the device to the cloud platform through the RS485 port.

Note: PT100 sensors have $0 \sim 5V$ type and $4 \sim 20$ mA type. For wiring, please refer to the application of analog input.

6.4 Application of battery cascade

When the quantity of batteries is more than 12, can use multiple BMS100 to measure the battery voltage and total voltage, as shown in the picture:

A large number of battery packs can be cascaded through multiple BMS100.

TVol +, TVol- can be used to monitor the total voltage of all batteries. Analog Input 1 can be used to monitor the battery current; Analog Input 2 can be used to monitor the current battery temperature.

If you need to monitor the current of each group of batteries, you can use King Pigeon S275 or other device to expand the Analog Input interface. S275 can upload all data of the device to the cloud platform through the RS485 port.

Note: PT100 sensors have $0 \sim 5V$ type and $4 \sim 20$ mA type. For wiring, please refer to the application of analog input.

7. Modbus Slave Application

This device has its own register address input register. The function code is 04. The device address can be set (default is 1). For the register address, please refer to the appendix.

The message format sent by the server master is as follows:

Send Content	Byte	Example	Description
Device Address	1	01H	Device 01H, range: 1-247, subject to the set
			address
Register start	2	00 00H	Register start address
address			
Read the qty of	2	00 15H	Read a total of 21 16-bit register addresses
registers			
16 CRC	2	F1 C3H	CRC0 CRC1 Low byte first

The format of the message returned by the device is as follows:

Send Content	Byte	Example	Description
Device Address	1	01H	Device 01H, consistent with the

			data delivered
Function Code	1	04H	Read input register
Return Byte	1	26H	Data length returned
		00 00 00 E7 00 00 00	
		DD 00 00 00 DD 00	
		00 00 DC 00 00 00	
Return Data	26	DE 00 00 00 DF 00	Return Data
		00 00 00 04 C6 01 9A	
		00 00 00 01 00 01 00	
		01 00 01	
16 CRC	2	A9 3CH	CRC0 CRC1 Low byte first

Example: Polling the 12 single-cell battery voltage, battery pack voltage and total voltage of this device at

the same time

Server sends: 01 04 00 00 00 13 F1 C3

among them:

01 : Device address

04 : Read input register value

00 00 : Register start address, please refer to the appendix for detailed address

00 13 : Consecutive reading of 19 input register values

F1 C3 : CRC

Device return: 01 04 26 00 00 00 E7 00 00 0D DD 00 00 DD 00 00 DD 00 00 DC 00 00 DE 00 00 DF 00 00 00 00 04 C6 01 9A 00 00 00 01 00 01 00 01

01 : Device address

04 : Read input register value

26 : Returns the number of data bytes

00 00 00 E7 00 00 00 DD 00 00 DD 00 00 DC 00 00 DE 00 00 00 DF 00 00 00 04 C6 01 9A 00 00 01 00 01 00 01: returned data

A93C: CRC

8. Warranty

- 1) This module is warranted to be free of defects in material and workmanship for one year.
- 2) This warranty does not extend to any defect, malfunction or failure caused by abuse or misuse by the Operating Instructions. In no event shall the manufacturer be liable for any module altered by purchasers

The End!

Any questions please help to contact us feel free.

Http://www.iot-solution.com

Appendix Local Register Address

Device's Modbus address can be changed by configuration software (default is 1) All register types are input registers, using 04 function code

Address	Name	Data Type	Description
0	B1		1st battery voltage, the actual value = the
			measured value / 100
1	B2	-	2nd battery voltage, the actual value = the
			measured value / 100
2	В3		3rd battery voltage, the actual value = the
			measured value / 100
3	B4		4th battery voltage, the actual value = the
			measured value / 100
4	B5		5th battery voltage, the actual value = the
			measured value / 100
5	B6		6th battery voltage, the actual value = the
			measured value / 100
6	B7		7th battery voltage, the actual value = the
			measured value / 100
7	B8		8th battery voltage, the actual value = the
			measured value / 100
8	B9		9th battery voltage, the actual value = the
		16-bit signed integer - AB order	measured value / 100
9	B10		10th battery voltage, the actual value =
			the measured value / 100
10	B11		11st battery voltage, the actual value =
			the measured value / 100
11	B12		12th battery voltage, the actual value =
			the measured value / 100
12	1st battery		Battery voltage of the first group, actual
	group		value = this value / 100
	voltage		
13	2nd battery		Battery voltage of the second group,
	group		actual value = this value / 100
	voltage		
14	3rd battery		Battery voltage of the third group, actual
	group		value = this value / 100
45	voltage		Ballan all of the first
15	4th battery		Battery voltage of the fourth group, actual
	group		value = this value / 100
40	voltage		Detter valte as a full of the
16	5th battery		Battery voltage of the fifth group, actual
	group		value = this value / 100
	voltage		

17	6th battery			Battery voltage of the sixth group, actual
	group			value = this value / 100
	voltage			
18	Total			Total battery voltage, actual value = this
	voltage			value / 100
19	AIN1 value	16-bit	signed	Actual value = this value / 10
20	AIN2 value	integer, AB order		Actual value = this value / 10